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proach of two nuclei. By including the Debye relation, 
Trot CX TJ/ T, and the Stokes Einstein relation, Dcx T/ TJ 
where T is the temperature 

l / Ti cxTJ/TcxD. (lb) 

Benedek's studies show that: (1) T i (P) / T l (1) is 
higher than that predicted. (2) D(P)/ D(l) and 
TJ(1) / TJ(P) do not have the same pressure dependence. 

Bull and Jonas15 have recently shown that the reason 
for the discrepancy (besides the paramagnetic impurity 
effects in Benedek's samples) arises because the simple 
Debye theory for Trot is incorrect. It has been pointed 
out that Tl must first be separated into its inter and 
intra parts before a comparison with D(P) or TJ(P) 
can be made. Consequently Bull and Jonas have re­
ported a deuterated-protonated separation study as 
a function of pressure in several mobile liquids to study 
the inter and intra parts as a function of pressure. They 
have found that l / Tl in ter(P) roughly follows the pre­
dictions of the BPP theory for D(P) and TJ-l(P) and 
l / T l intra digresses from the predictions of Eq. (lb). 

The above considerations have motivated and guided 
this study. The chief concerns of this work are: (1) to 
critically evaluate the translational relaxation theory 
with all available data; (2) to study the effect of pres­
sure and temperature on the nuclear magnetic spin­
lattice and spin-spin relaxation times Ti and T2 in 
three highly viscous associated liquids: glycerol; 1,3-
butanediol; and 2-methyl-2,4-pentanediol (BUT, MPD 
for short) , also to infer from these macroscopic times 
the pressure and temperature dependence of the micro­
scopic nuclear correlation time, Tt, and its association 
with the translational diffusion constant; and (3) as a 
secondary objective to compare the nuclear correlation 
time as a function of temperature and pressure (T, P) 
with microscopic relaxation times obtained from other 
types of studies. 

II. THEORY 

The correct formulation of the Torrey translational 
relaxation theory taking into account the Kubo­
Tomita16 correction has been given elsewhere12 •17 and 
will only be briefly reviewed here for the sake of clarity. 

Under the conditions of isotropic motion the auto­
correlation function for the mth term of dipole-dipole 
interaction Hamiltonian, which provides the major 
contribution to the proton spin-lattice and spin- spin 
relaxation in the liquids under consideration, is given 
by 

K(m)(T)=C(m)N Iff p exp{ - (2T/ r;)[1-A (p)]! 

XJ5/2(pr )J5/2 (pro)r3/2ro-3/2p (ro)dpdrdro (2) 

with m=O, 1,2 and 

C(O) =4811/ 15, C(l) = 811/ 15, C(2) = 3211'/ 15. (2') 

N is the total number of spins, J 6/2 (pr) is the Bessel 

function of order 5/ 2, p(ro) describes the initial physical 
distribution of the spins, A (p) depends on the model 
for diffusive motion, and T; is the average time between 
flights defined in terms of the average squared flight 
distance and the translational self-diffusion constant 
T;= (r2)/6D. 

With a model for p(ro), K(m) (T) can be further re­
duced without giving an explicit form for A (p). Torrey 
has assumed an initial probability distribution of the 
form 

p(ro)=n/ N, ro~d, 

= 0 ro<d, (3) 

that is, a uniform probability of finding n spins/ cc in 
the volume element dro beyond a distance of closest ap­
proach; d. It has also been assumed in this formulation 
that the spins under consideration are at the center 
of the diffusing molecules upon which the spins ride. 
Hubbard's formulation18 considers these off center spin 
effects in the extreme narrowing limit. Harmon and 
Muller17 have recently included the effects of a non­
uniform spin density and off center spins by using the 
radial distribution function and the Hubbard correc­
tion in the low frequency limit of the Torrey theory. 
Since incorporation of these effects is presently in­
tractible in the general frequency theory presentations 
here, these effects will be considered separately below. 
For now a uniform probability density will be assumed. 
Then, from Eq. 2, 

K(m)(T) =C(m) (n/d3) J dp[J3/2(pd)/ p] 

X exp(-(2T/T;)[l-A(p)]), (4) 

J<m)(w)=C(m)T;(n/d3) J dp[JS/2(pd) / p] 

X {1-A(p)/[1-A(p)]2-HwT;)2!. (5) 

At this point it is convenient to introduce the con­
cept of correlation time for the translational model. 
Kubol9 defined this time for the case of nonexponential 
relaxa tion functions20 as 

to K(T) 
To= J

o 
K(O) dT. (6) 

This To is identified as the fundamental microscopic 
time associated with the diffusion of spins giving rise 
to the relaxation of these. spins, i.e., 

= = -.3. .100 

dp J 3/2(pd) 
To-TNMR-T'-2T, 0 p [l-A(p)]' (7) 

The final solution of the theory under the above as­
sumption then reduces to giving a physical model for 
A(p) or equivalently its Fourier transform Pi(r). 
Kruger12 has shown that an A (p) = (1 + DT;p2)-1 arising 
from Torrey's thermally activated diffusion model 
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gives rise to a J<m)(w) of the form 

J<m) (w) =C(m) (n/d3 )ijl(a, WTI)TI, 

wherej,(a, WTI) is defined by Kruger as 

jl(a, y)=3(1/5+a)(v[1- (u2+v2)-l] 

+ exp( - 2v) cos2u{v[1 + (U2+V2)-1]+2} 

(8) 

+ exp( -2v) sin2u{u[1-'(u2+v2)-1]I )(1/y2), 

(9) 
where 

Y=WTI, (9') 

C)~ (2o''')-'[q(1 'Fq) ]''', (9") 

and 
q= {1+[1+(5a)-l]2(1/f)}-1/2. (9'") 

Here a= (r2)/ 12fll and from Eq. (7) 

TI= (fll/5D)(1+5a) = (d2/5D)+!Tj. (10) 

Using the Kubo-Tomita16 correction for Bloem­
bergen's l/Tl, 1/T2 expressions and Eqs. (8) and (2'), 
the following expressions can be obtained 

where 

1/Tu= (C1/w)[jl(a, y)+4jl(a, 2y)]y, (11) 

l/T2I = (C1/ W) [!+!/I (a, y)+jl(a, 2y)]y, (12) 

CI=~7r'YW(n/d3), 

and the limy-oj(a, y) = 1 has been used to specify 
J(O)(O) in the 1/T2 equation. 

It is of considerable interest to consider the limiting 
forms of 1/Tl" 1/ T2, for large and small values of a 
and WTj. 

m. LIMITING CASES OF THE KRUGER 
FORMULAS FOR l/T l ! 

A. Diffusive Limit (a~O) 

In this limit the mean jump length squared is very 
small compared to the distance of closest approach. 
This implies that !T,«d2/5D so that T!~fll/5D. In this 
case it is easy to show that in this limit, Eq. (9) re­
duces to 

jl(a=O, y) =H[u- (2U)-1]+{[U+ (2U)-1+2] 

x cos2u+[u- (2U)-1] sin2u} exp( -2u»(1/f), 

(13) 
where u= v= x/2= Hwfll/ D)I/2. 

This result yields a normalized intensity function 
which is equivalent to that obtained by Noack and 
Preissing7 and Abragam21 for a P(r, ro, T) given by 
Fick's law. This same result can be derived using the 
Torrey formalism by choosing A (p) = 1--:- (r2)p2/6, the 
first two terms of an expansion of A (p) in powers of p2. 

This result then is interpreted as the limit of the 

random flight theory when (r2) and Tj are small. The 
resulting l/Tl expression for the a=O case has the 
following limiting forms: 

1/TlI = [6( 5)1/2/25}r-yW(n/ d3) (W3/2T1l/2)-I, 

a=O, WTj»l, (14a) 

a=O, WT,«1. (14b) 

B. Jump Limit (a~oo) 

In this case A (p)~ so that Eq. (5) directly gives 
a single correlation time spectrum which yields the 
following: 

l/ TlI= (27r/ 5h4fi2(n/ d3 ) {[TI/ (1+w2d)] 

+[4rt/ (1+4w2d)]}' (15) 
where 

This result is formally identical to BPP rotational 
formula with a different strength factor. 

It is noted from these limiting case discussions on a 
that the important differences of the processes, i.e., 
l / Tl(a=O) cr:w-3/2 and 1/Tl(a~oo) cr:w-2, only become 
evident at values of WT ~ 1. This indicates the necessity 
of high frequency measurements. It is further noted 
that l / Tl for wT,«l is independent of the value of a 
since from Eqs. (4), and (6), J""j«l(W) = 1 67rnTt/45dJ 
so that 1/Tl(wT,<<..1)=27rn-yWTt/d3 for all a. In the 
wTJ«llimit a distinction between rotational and trans­
lational contributions is extremely difficult if the tem­
perature dependences of Trot and TI are similar since 
l / Tl rot (WTrot«l) = 2'Y4fi2Trot/ 5dintra6. 

IV. EXPERIMENTAL PROCEDURE 

A hydrostatic oil generating system capable of at­
taining 3500 kg/ cm2 with control to ±lO kg/ cm2 was 
constructed with standard high pressure equipment. 
The oil was separated from the sample vessel by a piston 
type separator cell. CS2 was used as the intermediate 
transmitting fluid. Measurement of the pressure was 
accomplished by direct reading of a Heise type "c" 
(0--3500 kg/cm2) Bourdon gauge whose guaranteed 
accuracy is 1 % of full scale. The pressure vessel used 
was constructed of 304 stainless steel (2 in. o.d., 
! in. i.d.) and fitted with high pressure thermocouple 
and electrical feedthroughs. Details of this system will 
be presented in a future work. 

The sample cell used to transmit the pressure to the 
liquid under investigation is identical to that described 
by Stejskal, Brooks, and Weiss22 •23 and was found 
us.eable through the range of the measurements (- 30-­
+70°C, 0--3000 kg/ cm2). It was found useful to only 
fill the sample cell to 85% of its total capacity to allow 
for expansion of the liquid at elevated temperatures. 

The temperature of the high pressure bomb ' and 
sample holder were maintained by a liquid bath set 


